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ABSTRACT

The Marlowe Monte-Carlo backscattering code has been used to calculate

particle reflection coefficients and energy distributions for H, D incident

upon Li, K, Ni, Cu, Mo, Ag, Cs, Hf, W, Pt, and U surfaces. The backscattered

energy and angular distributions are combined with a model for formation and

survival probabilities for H-, D- leaving the surface. A least-squares

fit of experimental measurements of H- yields from the composite surface,

Cs/Cu, has been used to obtain two semi-emperical constants U, B which enter

into the formation and survival probabilities. These probabilities are used

to calculate

limit to the

discussed as

the production probability which in turn provides an upper

negative ion yield. The choice of electrode material is

a function of atomic number.
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A MODEL FOR H- AND D- PRODUCTION BY HYDROGEN BACKSCATTERING

J. R. Hiskes, Lawrence Livermore Laboratory

P. J. Schneider*, Lawrence Berkeley Laboratory

We have developed a model for H- and D- production by hydrogen
*

backscattering from alkali metal surfaces and alkali/transition-metal

composite surfaces, Schneider (1980), Hiskes (1979), Schneider et al (1977),——

Hiskes and Karo (1977a, 1977b). In its essential form, the negative-ion-secondary

emission coefficient (NISEC) is taken to be the product of the reflected

particle velocity and angle distributions, the formation probability for

negative ions, and the survival probability of negative ions as they move to

great distances away from the surface.

For the optimization of negative hydrogen ion sources that utilize

surface production phenomena, Leung and Ehlers (1979), it is necessary to

select surface materials with high particle reflectivity together with low

surface work function. In this paper we discuss the particle reflection

properties of several possible cathode materials, and develop the model for

the NISEC of the composite surface, Cs/Cu.

For the backscattered energy and angular distribution data we have

recourse to the Marlowe Monte-Carlo particle reflection code of Robinson and

Torrens (1974), and Oen and Robinson (1976). The energy or velocity

‘8

b

distribution function and the angular distribution function for normal

incidence can be factored according to

F(v,e) dvd(cosf3)= f(v) cosedvd(cose)

*Present Address: Max
Republic of Germany

(1)

Planck Institute for Plasma Physics, Garching, Federal

-3-



The fraction of incident particles reflected by the crystal is then

RN= jf f(v) cose dv d(cose) . (2)

The reflected fraction versus atomic number for several electrode materials

is shown in figure one for incident deuterium energies of 50, 100, 150, and

300 eV. positive ion species D:, D:, and D+ from the ion source discharge

strike the active electrode material with equivalent deuterium kinetic

energies of eV/3, eV/2, and eV, respectively, where V is the discharge-

cathode potential.

Inspection of figure one shows that for incident deuterium energies of

300 eV the reflected fraction increases rapidly with atomic number up to

about Z = 50 and remains roughly constant for higher Z. The choice of the

optimum electrode material among the higher atomic number elements above

z = 50 can be made independentlyof reflection considerations. For lower

incident energies the asymptotic reflectivity is achieved at considerably

lower atomic number. For 50 eV incident particles the reflectivity of such

low-Z materials as Ni and Cu are already large enough to be attractive to

the source designer.

The energy distributions of the reflected particles are more sharply

peaked toward the incident energy for high atomic number materials and for

lower incident energies. In figures two and three are shown the energy

distributions obtained from Marlowe for 50 eV and 300 eV deuterium particles

incident normally on Cu, Mo, and W crystals. The data presented here were

obtained using the polycrystalline option available in Marlowe.

In figure four is shown a polar plot of the angular distribution of

the backscattered particles for 50 or 300 ev deuterium normally incident on

tungsten. The 50 eV data is shown on the left, the 300 eV data on the
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right. Both distributions are normalized at 0°, and each refers to the

backscattered distribution obtained using 1000 incident particles. The

300 eV data is approximated by the cosine curve but the 50 eV data is more

peaked toward the normal than is the cosine distribution. The trend toward

a more peaked distribution at lower energies is a prevalent feature of

Marlowe angular distributions, Oen and Robinson (1976).

The experimental data is analyzed using

[-

(x

NISEC(Ei) = ‘Jjfj(v) COS6 l-e I
v Cose e

The factor in the integrand

[

a

!
B

1-e- v cose e - v cose
9

the expression

6-—
V Cose &d(coS6) ● (3)

(4)

is referred to as the production probability and in turn is composed of two

factors: formation and survival probability. The quantity uwhich occurs in

the formation probability and the quantity B in the survival probability are

treated as adjustable parameters and obtained by a least-squares fit of

expression (3) to data points on the left hand

Schneider (1980), Hiskes (1979). The velocity

derived from Marlowe.

In figure five are shown experimental va”

for the NISEC in the case of hydrogen incident

side of the equation;

distributions, f.

ues of Schneider

(v), are

et al (1977)——

upon a partial monolayer

coverage of cesium over copper. The cesium coverage reduces the magnitude
●

of the surface work function but is too thin to contribute appreciably to

the backscattering. The least-squaresfits shown in the figure are obtained

using the Marlowe backscattering distributions, fi(v), for a Cu target.

Once thea, B have been obtained from the least-squares fit one can

construct the formation, survival, and production probabilities as shown in

figure six. The formation probability approaches unity at low energies and
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the survival probability tends toward unity at high energies. The

production probability is a maximum for a perpendicular energy near 30 eV

and is the limiting yield that could be achieved by total reflection of the

incident particles at the optimum reflected energy.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

The ref ‘Cted‘raction’‘N’
versus atomic number for deuterium

incident normally at either of several energies: V-50 eV;

A-1OO eV; 0-150 eV; 9-300 eV.

Histograms of the backscattered energy distribution versus

backscattered energy for 50 eV deuterium incident normally upon

Cu, Mo, and W targets.

Histograms of the backscattered energy distribution versus

backscattered energy for 300 eV deuterium incident normally

upon Cu, Mo, and W targets.

Polar plot of the angular distribution of backscattered

particles for 50 eV and 300 eV deuterons incident normally upon

w. The polar angle is measured away from the normal. The

circle represents a cosine distribution. Data points on the

left pertain to 50 eV deuterons, those on the right 300 eV

deuterons.

NISEC yields for hydrogen incident normally upon a composite

surface of a partial monolayer coverage of Cs on Cu. Circles -

exp. data; crosses - least-squares fits.

The formation, survival, and production probabilities derived

from the data of figure 5.
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